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The problem of selecting the normal population with the largest

population mean ~.‘hen the populations have a common known variance is

considered. A two—stage procedure is proposed which guarantees the same

prohaUility r~~uirement using the indifference-zone approach as does the

sirgle-stage procedure of Bechhofer [1954]. The two—stage procedure has

the highly des3.~’—th1e property that the expected total number of observa-

tions required by the procedur e is always less than the total number of

observations required by the corresponding single-stage procedure ,

rejardless of the configuration of the population means. The saving in

expected total nurib~r of obser~-ations can be substantial , particuiwiv

when the configuration of the population means is favorable to the

experimenter. The saving is accomplished by screening out “non-contending”

populations in the first stage, and concentrating sampling only on

‘ contending” populations in the c~cond stage. The two-stage proced re

can be regarded as a composite one which uses a screening subset-type

approach (Gupta [1956], [1965]) in the first stage, and an indifference-

zone app.eoach (Bechhofer [1954]) a~;lied to all populations retained in

the salected subset in the second stage. Constants to implement the

procedure for various k and P~ are provided , as are calculations

giving the saving in expected total sample size if the two-stage procedure

is used in plac~-i of the corresponding single-stage procedure.

_ _ _  J~~~-.~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ - • • . 

-~



‘-wu~~~ _~~ - -• ___________________
— —-  ~-~~~~--—

1. Int~ oduc~:ion ani_ Surimarv

In many practical situations a statistician is faced with the problem

of designing an experiment to select one (or more) out of k ~ 2 possible

competing categories. Typically the categories (populations) are char-

acterized by a real-valued parameter, and the experimenter is interested

in selecting the population having the largest (or smallest) parameter

value. This population is referred to as the “best” population. Thus,

for example, the medical research worker might be studying the response of

patients to different types of analgesic drugs in which case his interest

might lie in selecting that drug which produces , on the average, the largest

period of time without n~in , ox’ the agronomist might be conducting field

trials with different vai’ieties of grain in which case his purpose might

be to select that variety which produces, on the average, the largest yield

per acre.

Procedures for achie~’ing such objectives have received considerable

attention in recent years. Various probability distributions have been

postulated as being appropriate to model these and other real-life problems,

and several statistical formulations of these problems have been proposed,

and associated statistical selection procedures devised. Recent reviews

of the literature with particular raference to the normal means problem

appear in Wetherill and Ofosu [1974) and Bechhofer [19751. The present

paper continues the study of the normal means problem , and explores in

depth a new approach which has highly desirable properties. This same

approach is also applicable to the normal variances problem.
1.

The statistical formulation of the problem is given in Section 2. In

Section 3 we sketch the relevant history of the normal means problem, and

indicate the virtues and drawbacks of the various procedures which have

V 
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been proposed to deal with the problem ; the reader is thus enabled to under-

stand the role that our proposed procedure plays . The procedure itself

as well as the design criterion that we adopt are described in Section 4.

The main analytical results are contained in Sections 5 and 6 which deal

with t~e probability of a correct selection and the expected total sample

size , respectively ; Section 5.2 discusses a key unsolved problem (that of

dctermining the so-called least favorable configuration of the population

means) associated with the procedure, while Section 5.3 contains a strategem

which permits us to bypass this difficulty (at the expense of some loss of

efficiency of our procedure). In Section 7 we formulate the problem that

we must solve to obtain design constants to implement our procedure; tables

of these constants are provided in Section 8. The performance of our two-

stage procedure relative to that of the best competing single stage procedure

is studied in Section 9, and is shown to be highly satisfactory. We con-

clude in Section 10 with suggestions for future research in this area.

2. Preliminaries

2.1 Assumptions

Let j (1 ~ I < k) denote a normal population with unknown mean

and known variance ~
2
, and let ~7 = (Ul~~

. . .V U k)l
~ ’° < U~ c (l~~i~~k)~

be the parameter space of the p
1
. Denote the ranked values of the p .  by

~ 
and let p~~.1 — P[1). We assume that the experi-

menter has no prior knowledge concerning the pairing of the fl~ with the

Cl ~~~ 
i~i ~ k). Let 11( j )  denote the population associated with

Suppose that 
~[k-r] 

< 

~[k-r+l] ~[k] for some r (1 ~ r ~ k)  where we

define U[0] -~~
; then any one of the r populations 11(k r+j) 

(1 ~ ~ r )

is regarded as “best.”

V
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2.2  Coul and probability raquf ~’einent

The goal of the experimenter is to select a best population. This

event is referxed to as a correct selection (CS). The experimenter restricts

consideration to procedures (P) which guarantee the probability requirement

P {cS(P} > F~ V p E ~f l~
5) (2.1)

where {o*,P~) 0 < ~* < 
~~~, 1/k < P~ < 1 are specified prior to the start

of experimentation , and

= ~ ~~~k,k-l ~ 
(2.2)

We refer to ~(&~ ) as the preference zone for a CS and to ~~~~~ c~
_
~ (6 *)

as the associated indiff 3rence zone. The formulatIon (2.1) is called the

indifference-zone aprroach.

3. Background :__ Single-stage and sequential procedures

The indifference-zone approach as applied to the normal means (common

known variance) problem has received considerable study. Bechhofer [1954)

proposed a single-stage procedure which guarantees (2.1); Hall [1959]

showed that among single-stage procedures this procedure is “most economical”

and Eaton [1967) proved that it has additional desirable decision theoretic

properties. Bechhofer, Kiefer , and Sobel [19681 (see also, Bechhofer and

gobel [1954]) proposed an open sequential procedure without elimination

which guarantees (2.1). Paulson (1964) proposed a clo ed!~~
1entia1

procedure with permanent elimination which also guarantees (2.1); Fabian

4 [1974u] (see also, Fabian [1974h) and Laying and David [1966]) showed how

Paulson’s procedure couid be modified to improve its performance characteristics.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ 
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The single-stage procedure (P
1

) of Beclihofer requires a common

sample size n per population which is chosen in such a way that (2.1)

is guaranteed even when 
~(k~ 

- 6~ (1 5.. 1 ~ k-l), this being the

so-called least favorable (LI) configuration of the population means.

However, the procedure is conservative in that if, unknown to the “xoeri-

menter, 11[k) - 
~‘[i] > ~~ (1 ~ i 5 k-l) with strict inequality for at

least one i-value--in particular if 
~[k] - 

~[k-l1 
>> ~~~~, then

P~
(CSIP1

} > P~ for the actual p 
~ 
Q(~~ ) which the experimenter has

encountered. If this is the situation he may have greatly overpi.-otected

himself, the overprotection having been purchased by the use of a ~ciuch

larger n-value than would have been necessary had the true p-values been

known.

Unlike single-stage procedures, multistage or sequential procedures

provide information concerning the true but unknown p-values as sampling

proceeds.

The sequential procedure (P
5 

) of Bechhofer, Kiefer, and Sobel takes
1

a single vector of observations at each stage of experimentation . Here the

number of stages (N,, ) to terminate experimentation is an unbounded r.v.

(For a vector consists of one observation from each of the k popu-
1

lations.) In addition to guaranteeing (2.1) when the population means are

in the LI-configuration, it also reacts to favorable configurations of the

population means and thereby tends to terminate experimentation early

resul ting in E {N
s ~~ }-values which are smaller than n (c.f., B-K-S
1 1

(1968], Section 12.8.1). (Throughout this paper a will denote the single-

stage sample size for P1.) However , if ~ * is sufficiently close to

unity and if - 

~[k-1] 
< 6*__in particular , if = p~13, then

E (N ~P ) > a for the actual p 
~ ~o(6*) 

which the experimenter has
~~. 

S1 S
1
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ericcuntered. Howcvei’ , P~ does have a practical disadvantage : It is
1

open-ended, i.e., although N
s is finite w.p. 1, it 5s unbounded; this
1

latter fact may inhibit or prevent the use of the procedure in certain

situations.

The sequential procedure 
~
1
S~~ 

of Paulson which takes a ~ing1e vector

of observations at each stage of experinentation , and for which the number

of st~.ges (N
s 

) to terminate experimentation is a bounded r.v. (< M),
2

is an adaptive procedure. (For I’,, a vector consists of one observation

from each of the k. populations st~il retained “in contention” by the

procedure at stage j (1 < j < M , k k
1 

> k2 ~~ ... > k,~ > 2), those

not retained at stage j being permanently eliminated , here the k~

(2 5. j  < M) are r.v.’s.) In addition to guaranteeing (2.1) when the

population means are in the LI-configuration, it also reacts to favorable

configurations of the population means, eliminating from further s~~ piing

populations which are indicated as not being in contention , and in general

terminating experimentation early resulting in E
P

{N
S ~~ 

1-values which
— 2  2

are less than a. (See Ramberg [1966].) Of considerable interest is the

fact that if U
111 

Ii~ <~ 
and P~ is close to unity , then

E {Ws ~~~ } < E (I~ ~~ 
) for the actual p ( c2~(6*) which the experimenter

2 2 ~~
- 1 1

has encountered. The quantity E {Ts ~~ } , where T = total number of
2 2

observations to terminate experimentation , behaves similarly w.r.t.

E {T jP }. Since N < M we have E (N l~ } < M and E {T I~ } < kM
~ - 

S
1 

S1 S2 
— 

~ . S2 S2 ~~- 
S2 S2

for all IA E ~~ the bound H is a function of k, {t~*,P*} and also of

a design parameter A (0 < A ~ a*/2) which is fixed by the experimenter

before the start of experimentation.

Even though P
~ 

and P
S 

have certain high ly desirable prop erties
1 2

relative to P
1, 

both being adaptive and therefore being able to capitalize

.
.—  L.



~ : fa vorable coufigurat ions of the p3pulat ion means , both have the drawback

that they may require many stdges to terminate experimentation . Such

procedures are often very costly to implement , and in some experimental

situations may be cr ip)etely impractical, e.g. in agriculture where only

one stage , i.e., vector of observations , can be obtained each gro~:ing

season , the number of stages (years) to terminate experimentation would be

prohibitively large.

Thus , in this present paper we study a two-stage procedure which takes

a fixed number of vectors of observz ions at each stage of experincatation .

The procedure guarantees (2.1) when the population means are L~ the LI-

configuration. Iti~ ad~~tive , eliminating from further sampling in the

second stage populations which are indicated as not being in contention

after the first stage, and in general terminating experimentation after

the first stage if the configuration of the population means is very favor-

able, e.g., 
~[k] - 11[k-l) >> ô~ . In addition this procedure is designed

to be tninimax within a certain class of two-stage procedures.

4. A two-stage procedure (P2
)

~~~~ propose a two-stage procedure P
2 

= P
2
(n1,n2,h) which depends on

non-negative integers n1,n2 and a real constant h �~ 0 which are deter-

mined prior to the start of experimentation . The constants (n1,
n2,h )

depend on k and ~~~~~~~ and are chosen so that P2 guarantees (2.1)

~~d possesses a certain minimax property.

Procedur e

1. In the first stage take a1 independent observations

(1 < j < a
1
) from II. (1 ~ i < k ) ,  and compute the k

V

___  
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samile meafls XI  - = ~ ~ .~~~/n1 
( 1 < i < k ) .  LOt

~~1) max ~~~~ Determine the subset I of (‘4.la)
Uk] 1~ iik 

1

~1,2 , . ..  ,k} where I {11~~~i) > ~~~~ — h}, and

let fl
1 

denote the associated subset of {fl
1 112

,...

a) If fl
1 consists of one population , stop samDling

and assert that the population associated with

— (1)
is best .[

~
]

b) If fl~ consists of more than one population

proceed to the second stage.

2. In the secor.d stage take a,, additional independent

observations ~~~ (1 < i a2 ) from each population

in fl~~, and compute the cumulative sample means (4.lb)

~~ X~~
) 

+ 

~ 

X~~~)/(n1
+n2

) f 1~~ I. Assert

that the population associated with max X. is best.
iCI

Remark 4.1: This procedur e had been proposed previously by Cohen [1959]

and Alam [1970]. Due to analytical and computational difficulties, most

of their work was limited to the special case k = 2.

Remork 4.2: If h = 0 (h ‘o) the two-stage procedure P2 
reduces to

Bachhof er ’s [1954] single-stage procedure P
1 

with single-stage sample size

a n
1 

(n
1
+n2
) per population. Also, the rule determining I in (4.la)

is of the type proposed by Gupta [1956 ,1965] in his subset selection

procedure.

There are an infinite number of combinations of (n1,n2,h) which for

any k and {~*,p~} will exactly guarantee (2.1), and diff erent design

criteria lead to different choices . In the next sections we consider two

of these criteria.

~~~~~~~-:~ ~~a — ~’~~ --- ~ . . • .  
~~ 

., ‘, . ,~. ~~
. 

~‘.
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Let S’ denote the cardinality of the set I in (4 .la) ,  and let

(o if S’ = 1

S (4.2)

~~S’ if S’ > 1.

Then the total sample size required by P
2

(n
1,n2,

h)  is

T k n
1 +Sn 2

. (4.3)

Let E~{TIP2) denote the expected total sample size for P
2

(n
1,n2 ,

h )  under i~.

4.1 R-minimax design criterion

The design criterion proposed by Alam [1970) is the following: For

given k and specified {6i~,F~} choose (n
1
,n2,h )  to

minimize Sup E {TIP2}

subject to Inf P {cs~P2 } P’~, (4 . 4 )
11

where n
1
,n2 are non-negative integers and h � 0.

We denote by (n
1~
n21h~R~) the exact solution to (4.4), and by P2

(R
E
) the

procedure using this solution. The R-minimax criterion in which minimization

takes place over a restricted portion of ~ insures that E {TIP2
(R
E
)} <kn

y p ç ~2(6*) for any given k and specified {6*,P*}. However , it ignores

what can happen to E {TIP2
(R
E

)} if , unknown to the experimenter ,

( Indeed , for = 
~ [k] it is possible to have

_ _ _ _ _ _ _ _ _ _ _  

_  J,,-~~~‘ 
.,, , . ~
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Let S’ denote the cardinality of the set I in (4.la), and let

(o if S’ 1

S =~~ (4.2)

L_ s’ if S’ > 1.

Then the total sample size required by P
2
(n1,n2,h)  is

T = kn
1 + Sn2. (4.3)

Let E~{ T I P 2 } denote the expected total sample size for P
2

(n
1
,n
2
,h) under ~ .

4.1 R-minimax design criterion

The design criterion proposed by Alam 11970) is the following: For

given k and specified {~~ ,P~} choose (n
1
,n2,

h) to

minimize Sup E {T1P2
}

ç~ (~~~) .~~
.

subject to Inf P {csj?2} > P*, (4 .4 )
11

where n
1
,n2 are non-negative integers and h 

~ 
0.

We denote by (n
1~n2~h~R~) the exact solution to (4.~~

), and by P
2

(R
E ) the

procedure using this solution. The R-minimax criterion in which minimization

takes place over a restricted portion of cz insures that E {TIP2
(R
E

)} 
~ kn

V f~ 1~(6*) for any given k and specified {5*,p*}. However , it ignores

what can happen to E {TIP2(R~
)} if , unknown to the experimenter ,

( 

~~~~ 
Indeed, for p

111 
it is possible to have

~ 

~~~~~~~~~~~~ 
Ja~ I’- 

—~
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E {T JP 2 (RE
)} >> kri for P’~ sufficiently close to unity (as happens when

E {T} of the Wnld-Gipshick SPRT is compared to the total single-stage

sample size which guarantees the same probability requirement. See

Bechhorer [1950] and B—X—S [1968]. Section 12.8.1). It is to guard ag~iinst

this latter undesirable possibility that we propose the design criterion

described below.

4.2 U-minimax design criterion

Our design criterion is the following: For c’iven k and specified

{~*,p*) choose (n
1
,n2-,h) to

minimize Sup E~{TfP2
}

—

subject to Inf P {Cs~P2
} �~ P~ , (4.5)

1r~ (ó~~) B~

where n1.n 2 are non-negat ive integers and h ~ 0.

We denote by (n
l
,n2~

hfiJ
E
) the exact solution to (4.5) and by P

2
(U
E
)

the procedure using this solution. Our tJ-minimax criterion (4.5) in which

minimization takes place over the unrestricted parameter space fl insures

that E~{T(P2
(U~)J ~~ . kn V p ~ for any given k and specified {~*,P*}~

in this sense P
2

(U
E
) is uniformly (in u) superior’ to

As the first step in determining (n
l
,n2,hIR E

) or (n
1~
n2~h!U~

) we

find an exact analytical expression for P~{CSfP2
}.

a

V
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5. Probability_of a correct selection for

5.1 General e~~ression for P {CS1P2
}

Our result concerning a general expression for P~{CSIP2
} is summarized

in the following theorem :

Theorem 5.1: For any ~ ~ we have

1’ {cs~P }p 2

t xi-~ ./~~/a

~ J~ 
j
~ ~ ~ 

j ki 
~[y + (x — z ) (p l q ) ~

’2 + .-~~~~- (~ )1”~~d~(z )  ~
s S  -

~~~ 
-

~~~ iCs~~ x+(dk~
_h)/

~l
/a 

q

x ~1 t~[x + 
~~~~~~~~~~~~~~~~~~~~~ 

(5.1)

Us

k-i X_
~
Skj Yfl l/O

+ 

j~i s~s~ j -~ J-~~[JX_
k4+h)

~~l’O 
Jy÷(x_u)(p/q)V2_~~

j
(m/ q )h/2/a

/ (x -tS ..t’~~/a
I i r  iJ 1 1’2 1/2 I

x ( II 
~ J 4[v ÷ (u-z)(p/q) ‘ + t5~ 1(m/q) /a]d~(z))

irs ~ x~(5.1 +h)V~1
/a J

x 

~i~s 
~[x -

where ~
( .) is the standard univariate normal cdf , and

S the collection of all subsets of (1,2,...

S~ the collection of all subsets of (1,2,... ,j-1,j+l,...

m n
1
+ n 2, p n

1
/m, q n

2
/m.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~~
-
~~~~~ 
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Proo~~: Let 
a~i 

x
~~~~ /n1 and 

j~

’
i a~i 

X
~i~ a /m where X

~ i~a

is the ath observation in the jth stage from fl . , all— — (i) (i)a

(1 < 1 < k , 1 < a in . ,  j 1 ,2) being independent . Then

P~{CS I P2 } = ~ p {~~~~ ~~~~ ~ - h V i. c s;
— ~~~ —

~~~~ -h  Yi~~~s; X(k)  > X (i)  V i C s )

+ 

~~ 
- h, (5 .2 )

~ft~~~~~~~~- h V i E s ;  ~~~~~~~~~~~- h V i ~~~s;

X (k) > ~((j )~ X (k )  > V C S)

k-i
A +  ~ ~ B . .

ct8 ~=l sES~

Denoting [(~~~~ — u 1.1)/ç/o , (k~~~ — U~~~~~)l~~/0] by [ X . , Y. ] ,  we see

that [ X . , Y. 1  has a standard bivariate normal distribution with correlation

coefficient 1j~ (1 ~~. i ~ k). In what follows we shall use the equality

.i~ ~[1~~.
Z
i,2]d~ ( z) (5.3 )

• where •2
[.,.j p] is the standard bivariate normal cdf with correlation

coefficient p (-1 < p < 1).

We first consider

V
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+ 6ki v’
~~

/’0 > X
i 

> + 
~~ k~~~~~

)1’ / a  V I ~ s ,

X
k 

+ “ki~~~~~i”° 
> X . V i ~ s,

Y + o .v’~/a > Y. V i s}
k ki 1

I I n {~2[u + 
~ki t’

~~
l’0
~ 

v ÷ 6ki v ah’
~
]

-~~~ -
~~ içs

— •2
[u + (6kj-h)Jiij/o, v ÷

x •[u + (6¼. _h)~~~
/0]d

2
[u ,vlv’

~
] (5.4)

i~s

I u+tS .i’~n /c,
r~ r~ I c  ki 1

= J j rt 
~ J •[v/4 - z(p /q ) 1” 

+

-~~~ -
~~~ irs

x H ~Eu +
Us

I x+tS ./i~7ci
f~ 

(
~ 

( Xi 1 ‘2 1f2
= J J II ( j ~[y + (x—z) (p/q) 

/ 
+ &.(m/q) /o]d~(z)

-~~~ -~~ irs ~ x+(ô~~_h)V~j/a

x II •[x + (6.~.-h)1~~/o]d~ (y)d~(x).
Us 1

The next to last equality was obtained using (5.3), and the last was obtained

by vak in~ the transf ~rr~~tion x u , y (v-u ~~ )/ (l-p)~~
2 .

We next consi der

V

hi. 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~

= - 

~k~~~Y° > Xk 
> X

i 
-

- 6~~~ n1/o > X1 > X~ - (6
~~

÷ h)
~~~i10 V i (

X. - (6 .  .+h)v’~~/a > X .  V I f s
J 1] 1 1

Yk + 6
kj

& / c > Y j~~~
Yk + 6 kj & / a > Y j V i r s }  ( 5 . 5 )

_ ..— x-6 .I~~/ c— k j  1
= J J I I J (n {

~ 2
[
~~~

6 ..J
~~

10, w 6 . Iu~/ c~I~]
—

~~ ~~~~~~~~~~~~~~~~~ 
t 6

k./m/a\irs 
1] 1

— 

~~~~ 
— (6 ..÷h)/x~~/o , w +

x 
~[x - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Proceedin g as with A , we apply (5.3) to (5.5) and then make the transforma-

tions x = x , y = (t— xV ~ )/ ( l— p) 1”2 and u u , v (w_uv~~)/(l_p)~~
’2
.

Substituting the resulting expression and (5.4) in (5.2) we obtain (5.1).

Corollary 5.1: Let ~i(6) denote any ~i ~2 such that p
111 

= 
~
‘[k-l] 

= 
~
‘[k] -

where 6 ~ 0. ( ‘~ ( t 5 ) is known as a sli ppage configuration.) Then we have

x+6 /~~/a
{cs)P } J j (~ 

1 
•(y ÷ (x_z)(p/q)L~

2 
+ 6(m/q )~~~

2
/a]d~~(z)

!J_(6) 2 
-~~~ -~~~ x+(6-h)v’~~/a

+ ~[x + (6-h)1~~/a]) d~ (y)d~ (x )

(5.6)

~— x-6v’i~~/ar~ r~~ ( r  1
+ (k—l) J J I J J 1/2 1/2

-

~~~ 

-~L x-(6+h)t’~j/o 
y+(x-u)(p/q) -6(rn/q) Ia

+ ( u - z ) (p / q )1”2 +
x-h1’i~j~/a

+ $(x - h~~/a))kd,(v)d~(u)1d~(y )d~(x ) .

ii ~~~~~ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
•- . ‘- •.~ •., -. ••
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Proof: The proof is straightforward.

Remark 5.1: For k = 2, (5.6) simplifies considerably ; the resulting expres-

sion is given by Alam [1970] as his equation (3.1). Alam also gives an

expression for P (6){CSIP2
) (see his second equation (3.24)); however, we were

not able to verify his expression.

5.2 LF-config’iration_for P2

In order to solve (4.4) or (4.5) it first is necessary to determine the

LF-configuration of the p . for P~ , i.e., to determine any ~~ r c~(6~ )

such that

P {cs~P~} Inf P {cs~P2}. (5.7)
IL

As a first step toward determining u~ 
we now study the monotonicity of

w.r.t. the P [i ]  
(1 ~ i ~ k ) .

Lemma 5.1: For fixed k and P[1] (1 ~ i ~ k-l) and fixed (n
1
,n2,

h ) ,

P {CSIP2
} is non-decreasing in

Proof: From (5.4) and (5.5) we have

P {CSIP2
} = P { U  [ ((X X + ô

ki i~
0 > X,. > X.K + (6k1

_h)V’c/a v i ~~ s,

X~Jç + (âk~
_h)J

~j/a 
> X

~ 
V I ~ s)

U U  (X. — 6k . v’
~~

/cJ > X
X 

> X. - (6kj +h)P’~~
/a
~ (5.8)

X
1 

_ 6
~j v’?i

~
Ia

~
. X 1 > X

~ 
— (6

~~
÷h)P’i

~~
/0 V i E s , i � j ;

- (6. .+h)tç/ a  > V i ~ s)} ~ {Y
k ~ 

6ki
/i
~
/a > 

~~~~ 
V i s}]}

P{A(ii)}

~ ~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~
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where A( l )  is in the sigma algebra generated by the r.v.’s (x . , Y1
] ( 1 < i ~~~ ) .

Now consider a vector i~’ = (p ,... ,p~~) where = (1 $~ 
I ~ k— i)

and > Then P ,{CS1P2
} = P{A(p’)}. We shall show that

Mp ’) DA(j.i). We denote the value taken on by a r.v. X at a sample point w

by X(w). Also let 6!. ~~~ 
- (1 ~ i , j  ~ k). Then 6J i  > 6ki

(1 < i < k—i) and 6 .  = 6.. (1 < i , j  < k—i).
— iJ 1)

Fix w ( A (p )  which corresponds to some set s r S.

Case 1: Suppose that w belongs to the following event:

{x
k

(w) + 6ki V
~~

/
~ 

> x . (~) > X]~(W) + 
ki

_
~~

P’~ i”~ 
V i ç s,

+ (6kI
_ h)

~~~
/a > X.(~~

) V i E s) .

Then it also belongs to the event

+ > X.(u) ‘ Xk
(
~
) + (6~ .—h)i4~~/a V i ~ s’,

+ (6~~.—h)ç/ o > X~ (w)  V i ? s’}

for some set s ’ ç S, s’ C s.

Case 2: Suppose that s is non-empty and for some j  r s, w belongs to the

following event :

{X
1

(w ) - 6k./i~
/a > > X~ (u3 ) - (6kj +h)V~~/a , (5 9)

X

1

(w) — 6.~ ’~~/a > X.(w) > X . ( w )  — (6.~ +~ )/~~/o V i E s, i � j;

— (6..+h)”~~/a > X.(~ ) V I ~ sJ.

V

a
— __J__,~.= 

~~~~~~~~~~~ ~ Lg..-’ - 
~‘
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No~ suppose that 6
1~ 

in (5.9) are replaced by 6•~ and that

X
1

(w) — 6
1~~/iç/O 

> X~(w) is still satisfied . Then (5.9) holds with

replaced by 61~ 
(1 < i,j  < k) and $ s’. On the other hand , if

X .(w) - 6~ .~’~j/a > X.(~~) is violated , then w must belong to the following

event :

{Xk(w) + 6~ .~
1
~j/a > X . ,( w )  > X~~~(u) + (6 ,’,~.-h) V ~~ /a V i C

÷ (d~.-h)1~j/a > X~ (w ) V i ~ s’}

for some s’ cs.

From Cases 1 and 2 we I~ave & C s, and hence we obtain

÷ 6
k
i
~~~~~

/ , > Y.(w) V I c si

+ 6~ .v’fi~/a > Y. ( w)  V i r

Therefore w E  A(l) -~~~ w r A (p’) and A(~ ) CA(~
’). Hence P{A(1’)} > P(A(~

)}

and P ,{CSIP2
} > P (CS~ P~ } which completes the proof of the lemma.

Corollary 5.2: P (6) {CSIP2} is non-decreasing in 6 ~ 0 when 
~[k-l)

is fixed. In particular, for k = 2 P~(CSIP 2} achieves its infinium over

0(6*), i.e., satisfies (5.7), a t any p satisfying P[2] - p
111 

= 6* .

Proof: Since P
2 

is translation invariant, P {CS~P2} depends on p only

through the 6ki (1 ~, i ~ k-i). The result then follows from Lemma 5.1.

Remark 5.2:  The method of proof used for Lemma 5.1 does not carry over to

prove our’ intuitive conjecture that P~{csiP 2 ) is non-increasing in each

(1 � k) when the remaining p-values remain fixed ; nor have we been successful

Le ~~~~~ ~~~~~~~~~~~~~~ . ‘- 
- 

-“ S - ‘

~~

‘ ‘ - 

- -
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In finding alternative methods of proof. However, Monte Carlo samplings that

we have conducted have supported this conjecture. Nonetheless, the monotonicity

of P {Cs t~2} in the 6
k ~~ < i < k-i) for k > 2 still remains an open

question. We believe that the following conjecture made by Alam [1970] is correct:

Conjecture 5.1: For fixed k > 2 and (n
1
,n2

,h) ,  the slippage configuration

u(6*) is a LF-configuration for

5.3 Lower bound for P (CS~P2}

In this section we derive a lower bound for P {CSIP2
}. This lower bound

will prove to be particularly useful for k > 2 since we will prove that it

achieves its infimum over c~(i~~) at p(6~
) ,  the conjectured LF-configuration

for P
2
; this result will permit us to construct a conservative 2-stage

procedure (for k > 2) which will guarantee (2.1). The lower bound involves

integrals the values of which can be easily calculated on a digital computer.

Theorem 5.2: For any p 0 we have

P {cstP2} > ~[x + ( 6
k.÷h)cJoJ + ; ~[x + 6k.~~

/
~~~

d
~

(x) - 1. (5.10)
— -~~ i=1 i=1

Proof:

1 — P {CSJP~} = P{ Incorrect selection JP2I

£ P (~~~ ~~~~~~~~~~~~~~ 
- h f or some i � k} + P (X (X) < X (~) for some i � k}

l _ P
Pt~~~~~~~~~~

_ h V i � k } + 1 _ P
l
{X(k)~~.

X(j) V i � k }

~ k-i ~ k-i
2 - J H $[x + (6 kI÷h)c/a]d~

( x ) _ J  H •[x + 6ki~
’
~
/a)d

~
(x).

-~~i=1 -~~i=1

4
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A re r:an~~ment of the terms gives the desired lower bound.

Corollary 5.3: For all ii r 0(6*) we have

P~{CslP2} 
~ 

{~
k_l
[ + (6*+h )/ ~~’/a] + ,

k l
t~ + 6*,~ /a]}d~~x) - 1. (5.11)

Proof: The proof follows immediately on noting that the r.h.s. of (5.10) is

non-decreasing in each 6ki for 1 ~ I k-i.

CO~’ollary 5.&4: Since the r.h.s. of (5.11) is strictly incre:~sing in each of

m , h, and -
~ 1 as n

1 
or as n2 an~ h ~ ~ , we see thit (2.1) can

be guai’antoed if all are chosen suffic~ently large.

As a consequence of Corollary 5.4 it is clear that a conservative two-stage

procedure which guarantees (2.1) and which en~ioy’s either the R-minima:~ or the

U-minimax design criterion can be constructed and implemented using the lower

bound given by the r.h.s. of (5.11). We shall denote such procedures which

employ these criteria by P
2

(R
c

) and 
~~~~~~~~~~~~~~~~ 

respectively. P2(R
c
) IS

conservative relative to P
2

(R
E
) (as is P

2
(U
C
) relative to P2

(U~ ))  since

it ovcr~protects the experimenter with respect to (2.1), thIs overprotection being

purchased at the expense of an increase in E {TIP 2 (R c
)} and E (TIP 2(Uc)} at

j.i(6*) and i’(O), respectively. We consider P2
(R
c
) and p

2~~
1
0
) in detail

in Sections 7-9.

Remark 5.3: If we let h + ~ on the r’.h.s. of (5.10) we obtain
k-iJ i~l 

~~ + 6kiV~
/a]d

~
(x) which is an expression for P {CSIP1} where P

1

uses a common single-stage sample size in per population . Thus P
~ 

is a

special case of any P 2 ( ’)  based on the conservative lower bound.

_ _ _ _ _  

- - .1 - 

A
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6. ~~nected total sample size for

In order to solve either (4.4) cr (4.5) we first find an analytical

expression for E {TjP
2
); this is done in Section 6.1. Then it is necessary

to determine Sup E {TIP2} for p ç  0(6*) and for ILE 0 for (4.4) and (4.5),

respectively ; the sets of p-values at which these suprema occur arc found in

Section 5.2.

6.1 General enpreEsion for EU
{T

~
P 2}

Our result concerning a general expression for E~J
{T~P2) is suamarized

in the following theo~’em:

Theorem 6.1: For any u 
~ 
0 we have

E { T I P 2
} =

(6.1)

+ ~2 
~~~ 

~~[x + (61~+h)~~~/c] - 
j

11
1 

~~[x + (6
1~
-h)~~~/a~~d~(x).

j�i j�i

Proof:
E{T~P2) kn1 + n~E ( SIP 2

)

= kn1 + n2
[E (S’jP 2} 

— P {S’ = 11P 2
)]

— — (6.2)

= ku 1 + n [~ P ( ~~~~ > - h V j � i}

- 

i~l 
P{~~~~ ~~~~~~ + h V j  �

Theorem 6.1 follows immediately .

V

~~~~~ - 
‘
~ 

-
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6.2 The sunremum of E {T1P~}

Our results concerning the supremum of E {TJP2) for p ç o(o~
) and

~ 
ç ~ a~e suam~rjzed in a) and b) of the following thecrem.

Theorem 6.2: For fixed k and (n
1,

n2,h) we have that

a) Sup E { T I P 2} = km
1~-~ (~ *) L

+ {~~~~
k_ 1

[X + (o~+h)~~~/01 - ~
k_ l

1~ ÷ (6*_h )~~~/a]}d~(x)

(6.3)

+ (k-i) J (~~~~~
2
[x + hJ~~/a~~.-[x - (6*~h)v~~/o]

- ~
k_2

[x - h~~~/aJ~[x - (6;÷h)v
~~
/a]}d

~
(x)1

which occurs when P [1] = 
~[k-l1 

-

b) Sup E {TIP2} = km
1 

+ kn
2 
~~ 

{~
k_l

[x + hv’~~/o] - ~
k_ 1

i~ - hI~j/a1)d~(x) (6.4)
— -~~

which occurs when p
111

We shall prove part b) of Theorem 6.2; ‘the proof of part a) follows along

the same lines.

Proof: Gupta [1935] has shown that E {S’jP
2
} achieves its supretnum for

(2 when 
~~ij 

~~~~~~~~~~ It only remains to show that P~~S’ = l IP
2
) achieves

its infimum when p 111 = 
~ [kJ~ 

We use the method of Gupta [1965].

Set p
111 ‘[b] = 

~“ 
< 

~[b+l] for some b (1 £ b £ k-i) and

define 6. = P [.~~~ 
- p for b+]. ~, I ~ k. Define

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
:-
~ - -~~~~~~
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Q (p) = P {S’ i~P~ ; P[1] = 
~[b]

k

= b ~
b_i

ç~ — hv~~/o] It ~[x -

—

~~~ 
j~b+l

k ,~ k
+ 

~ 
~~ + (6 .—h)i~~/o] TI ~[x + (6..—h)V ’

~j/c]d~(x).
i=b+l -

~~~ j=b+l
j�i

After differentiating w.r.t. p, and then interchanging the order of inte-

gration and summation in the first ez’m, and making appropriate substitutions ,

we obtain

dQ = 
b~’i~1 

~ 
~b-l~~ + (61

-h)/~j/a) fl •[x ÷ (6 1~ -h )v’~~/a]
-~~

j�i (6.5)

- h/i~~/a]~ [x + 6 1i~~ f a ]  - ~[x + (6
~
_h)v

~~
/a]

~
(x)}dx < 0.

The last inequality is obtained by noting that the quantity inside { } in

(6.5) is non-positive for every x and I for b+l < i < k due to the

monotone likelihood ratio property of $. It follows that Q is non-increasing

in p and is in fact strictly decreasing if h,n1 > 0. Thus subject to

U[1) = ... p 111 , we see that P (S’ lIP2
) is minimized by increasing

the common value p until 
~ 

= 
~ cb+ir 

Since this is true for each b < k-i,

it follows that P (S’ = l IP  ) is minimized and hence E {Tj P ) is maximized2 2

over (2 when p 111 = 
~“[k]

Using the results of Theorem 5.1 and Lemma 5.1 along with Theorem 6.2 we can

now formulate our optimization problems (L~~ . 4 )  and (4.5) precisely.

~ 

~~~~~~~~~ ::~ 
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7. çp~t iT*uization probleus yieldinc~ conservat ive solutions

In this section we consider the optimization problems (4 .4)  and (4 .5)

which cnc~ nust solve in order to determine (n l,n 2 , h !R E
) and (n i ,n 2 , h l tit

)

which are necessary to implement P2 (R r ) and P 2 (U~ ) . As noted in Section 5.2 ,

we have not been successful in determining the LF-eonfiguratior. of th-~

(1 < i < k), except for k 2. Thus for k > 2 we replace the exact

probability Inf P {CSIP 2
) by the con~ crvative lower bound o:i that

probability given by the r.h.s. of (5.11), and consider the following optirniza-

tion problems :

7.1 Discrete cpt$.inizntion problems

7.1.1 R-minimax design criterion

For given k and specified {8*,P*) choose (n
1
,n2 ,h) to

minimize Sup E (TIP2)
pE~(6*) i~_— (7.1)

subject to {~
k_l

Cx + ( ÷h)/~~k] + ,
k_ l

1~~~ ÷ 6*f~~/i)}d~(x) - 1 >

where n
1
,n2 

are non-negative integers and h ~ 0.

In (7.1), Sup E (TIP 2) is given by (6.3). We denote by (n1
,n2,hIR0

)

the solut ion to (7.1) ,  and regard it as a conservative solution to (4 .4 ) ;  we

denote the corresponding procedure by P2 (R c).

7.1.2 U-minimax design criterion

For given k and specified {6*,P*} choose (n1,n2,h) to

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~ 
.__:~I__ __ -



mininize Sup L {TjP2
}

- ~~~ (7.2)

subject to ~~~~~~~ + (o*+h)V~~/0] + ,
k_l

[X + 6*/rn /a]}d~(x) - I ~

- where n1,n2 are non-negative integers and h ?. 0.

- In (7.2), Sup E {TIP
2
) is given by (6 .4) .  We denote by (n1,n2,hIUc

) the
pç(2 —

solution to (7.2), and regard it as a conservative solution to (4.5); we denote

the corresponding procedure by P
2

(U
c~~

7.2 Continuous optinizati-Dn_pro1~1Lr~

The problems (7.1) and (7.2) are extremely complicated integer programming

- problems with non-linear constraints and objective functions. Although these

problems can be solved in principle by enumeration , the search is likely to

- be a costly one because of the numerical evaluation of the integrals involved.

- Additionally , since the solution depends on 6*, a separate solution is

required not only for each k and P*..value , but also for each 6* . Hence

we shall remove the restriction that n1,n2 must be integers ; we reparametrize

- the problem and regard the new design constants (which are functions of

• n
2, 

and h)  as continuous . We use this continuous version as a large sample

- approximation to the discrete version.

We define the new design constants

c
1 

= 6*?~j/a, c2 6*vç/i, d = h”~~
’/a. (7.3)

We note that the exact expression for P~{cStP2
} and the conservative lower

bound on it, as well as E~{T!P2} depend on (n1,n2
,h), 6*, o only through

(c1,c2,d) and 6,~~/6* Ci. ~ I ~ 

_ _ _  ~~i-~~•~~~ _ _ _
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Thus , for example , for given k and specified {6’~’,P•~) we can epproxi-

mate the design constants (n
1
,n2,hIU~

) necessai~’ to implement P2
(U
~
) by

solving the continuous optimization problem:

minimize kc~ + kc~ J {~~~
1 (x+d) - ~

k_ l
(xd )}d,(x)

-
~~~ (7. t

~)

subject to J {$k_ l(x+c +d) + ~
k_ l

(x + (c~+c~)
1”2)}d~(x) - 1 ~ P~

where c
1
, c2, d > 0.

We denote by 
~~~~~~~~~~~ 

the sclut5r~u to (7.4), and use the approximate

design constants

(7 5)

where [z] denotes the greatest integer < z, to implement P
2
(tJ
c
)
~

Similarly , for k 2 and specified {6*,P*} we can approximate the

design constants (nl,n2,hIUE) necessary to implement 
P
2
(U~) by solving

the continuous optimization problem :

minimize 2c~ + 2c~{4(d//~) —

Cc +d)/~~ 

• 
(7.6)

subject to •E(c1-d)/
V~] + 1 ~[x/~7~ + /(c~+c~)/2q1dG(x) > P*,

(c1-d)/v’~
’

where c
1
, C2, d ~ 0.

We denote the solution by (
~l,

C2,a,UE). Analogous expressions can be written

• - -

~

• • .

~

—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2~

in order to appi’oximate the design constants (n
1
,n2,hJR~

) for k ~. 2, and

(n
l ,n 2I h I R E

) for k = 2.

~. Constants to implement P2
8.1 Constants to implement P

2(U~
) and P2(RE ) for k = 2

Table 1 contains constants necessary to approximate (ni,n2
,h IUE

) and

(n
l
,n
2
,hIRE

) fcr k = 2 and selected P*; although we are prin~arily

interested in the ones associated with P2
(U
E

) , we have computed those

associated with P2
(R
E) for comparative purposes. (See Section 0.) The

computations for P
2

(U
E
) are the solutions of (7.5), while those for P2

(R
E
)

are the solutions of the analogous problem wherein Sup E {TIP9} over (2(6*)

is minimized. The constants given here for P2 (U E
) and P2

(R
E
) are exact

since the LF-configuration for P (CS} is known for k 2.

8.2 Constants toi~ipJ.enent P2(u..) for k > 3

Table 2 contains constants necessary to approximate (n1,
n2,hIU~

) for

k = 3,4,5,10,15,25 and selected P*; the computations for P
2

(U
c

) are the

solution of (7.4). The constants given here for P2 (TJ C
) are conservative

since the LF-corfiguration for P {CSj P 2} is uriknos.’n for k > 3. (We have

not attempted to compute the constants (a
1~
a
2~alU~

) which would be used

if the conjectured LF-configuration for P {CSIP 2) were indeed 
~[k] 

- 

~[i] = 
~~

(1 ~ £ 
k-i) for k > 3; such computations, although of interest, would

be difficult to carry out because it would be necessary to evaluate numeri-

cally very complicated iterated integrals.)

All of the computations for Tables 1 and 2 (as well as those described in

Section 9) were carried out in do-able precision arithmetic on either Cornell’s

I9M 360/65 and IBM 370/168 or on Northwestern ’s CCC 6400. To solve the

4

• ~~~~~~
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Table 1

Constants to implement P2 (U
E

) and P2(RE
) for k 2

_________ —_______ -_________ _________- _________ ________

c
~ 

C
2 

a C
l 

C
2 

a

0.9999 4.5397 2.9087 0.97215 3.4801 4.4120 1.9162

0.9995 3.9742 2.6708 0.95623 3.1239 3.9034 1.6992

0.999 3.7062 2.5712 0.94824 2 .9566 3.6506 1.5026

0.99 2.7189 2.0906 0.91513 2.2931 2.7371 1.2803

0.95 1.8621 l.6l5~ 0.83072 1.6583 1.9347 1.0574

0.90 1.4270 1.3132 0.85278 1.3224 1.4996 0.92974

0.85 1.1391 1.0930 0.84174 1 1.0789 1.1880 0.90951

0.80 0.91577 0.90970 0.82702 0.88255 0.96174 0.07132

0.75 0.72801 0.74161 0.81999 0.71036 0.77072 0.84413

0.70 0.56240 0.58661 0.80783 0.55468 0.59769 0.82505

0.65 0.41227 0.43299 0.00202 0.40845 0.43057 0.81002

0.60 0.26982 0.28775 0.79714 0.26907 0.28914 0.79865

0.55 0.13374 0.14322 0.79140 0.13378 0.14318 0.79053
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Tal-le 2

Constants to implement P2(U0) for ’ k > 3

—

k -I
c
~ 

C~

0.99 2.9326 2 .4083 1.2458
0.95 2.0893 1.8974 .1.6303
0. 90 1.6699 1.5491 2.1814
0. 75 1.0492 0 .97980 3.9335

0.99 3.0432 2.5805 1.2596
0.95 2.2400 2.1106 1.4806
0.90 1.8262 1.7859 1.8245
0.75 1.2203 1.1712 3.2365

0. 93 3.1035 2 .7301 1.2712
0.95 2.3 164 2.2622 1.4604

5 0.90 1.9209 1.9786 1.6403
0.75 1.3191 1.3304 2 .7280
0.60 0.96047 0.91856 4.3338

0.99 3.2364 3.1620 1.3453
0.95 2.5094 2.7750 1.3529

10 0.90 2.1466 2.5349 1.3830
0.75 1.5712 1.9725 1.6980
0.60 1.2248 1.3491 2 .7648
0 .4 5  0.954 53 0 .92770 4 .3433

0. 99 3.2983 3.388 3 1.3999
0.95 2.5886 3.0259 1 3771

15 0 .30 2.2344 2 .8212 1.3676
0 . 7 5  1.6899 2. 4268 1.3974
0.~ 0 1.3404 1.7600 2.0210
0.45 1.089 7 1.1270 3.5471

0.99 3.3634 3.6572 1.4 783
0.9 5 2.664 6 3 .3204 1.4401

25 0.30 2.3270 3.1393 1.3972
0.75 1.8000 2.8539 1.3234
0.60 1.4909 2.7798 1.1769
0.45 1.3026 3.1516 0.76886

1

~ 
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continuous optimization problems, first a “reasonably good” discrete optimal

solution was found by a search method. This solution was used as an initial

guess in the computer program using a modified version of the steepest descent

method to solve the continuous non-linear programming problem ; Algorithm 304

of Hill and Joyce [1967] was used to evaluate •( ) ; the integrals were

evaluated using the Romberg method of integration. We do not claim that

our solutions represent the absolute optima , but they are reasonably close to

the optima. (The E {T lP 2 (U
0

)}~ surface is very flat in the neighborhood of

the maximum for P* + 1/k since P2 (U
~

) . P1.) The tabulated values should

be correct to the number of significant figures given .

9. The performance of P2 relative to P1
As a measure of the efficiency of P1 (Bechhofer [1954]) relative to

that of P2 when both guarantee the same probability requirement (2.1), we

consider the ratio (termed relative efficiency (RE)) E~{TIP2}/kn where

n = [(a0/6 *) 2 
+ 1], and a is the solution of

J 

,

k_ l

( X +a) d~~~~(X )  = P*. (9.1)

Clearly RE depends on ~i and {6*,P*}; values of RE less than unity favor

P2 over P
1
. For mathematical convenience we shall use the continuous

approximations to E {TIP 2} and n (thereby ignoring the fact that the sample

sizes must be integers). RE is then given by

[kc~ + C~ 
~1 

J1(~1 •(x+d+611c1/6*) - ~~~ •(x_ d+6 jj c1/6*~~ d~ (xj /kc
2

( 9 . 2 )

4
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wh.~re we employ in (9.2) either (&l,2 ,dIP2(UE)) for k 2 or

(ci,c2,dIP2(U
~
)) for k ~ 3. (ifl order to compare the performance of P

2
(U
0
)

with that of P
2

(U
E
) for k = 2, we also will employ (~1,~2,aIP2(u0)) for

k = 2. See Table 3.) The value of c in (9.1) has been tabulated for

selected k and P* by Bechhofer [1954], Gupta [1963], and 1~i1ton [1963]

(Bcchhofer’s A = c, Gupta’s and Milton’s H =

r~max’k 9.1: For the equal means (EM) configuration U[1] = 
~~~(k]’ 

and for

the u(6*) configuration ‘[l) U[~~1] = 
~Lk] 

- 6* (known to be LF for

for k = 2 and for P
2

(U
~
) ~or k �. 2 , and conjectured to be

LF for P
2
(u
E

) for k > 3 ),  we note that RE depends only on k and P~

for given P2(.) and ~i

Table 3 which concerns P
2

(U
E
) and P

2
(U
C

) for k = 2 , and Table 4

which concerns P2 (U
~

) for k ~ 3, give computad RE-values for selected P*

and p ~ to indicate the magnitude of the saving in E1~
{T~ P} achieved

by the screening property of P2 (Uc
) (P

2
(LJ
E
)) when P2(~) is used in

place of P
1 

for k ?. 2 (k = 2 ) ;  the computations for Tables 3 and 4 are

based on (c1,c2 , d) listed in Tables 1 and 2 , respectively .

9.1 P
2

(U
E
) and P2 (U c) vs. P1 for k = 2

For all P* we note that RE is less for I’ (U ) than for P (U ) ,
— ~(o) 2 E 2 C

but RE (~,) is greater for 1’2~~E~ 
than for P2 (U c

) (since for

P
2
(U

E
) turns out to be greater than for P2

(U
c
)). The range of

— U(1))/6* 6/6’
s
’ values over whIch RE (15) 

is less for P
2
(U
E
)

than for P2
(U
0
) for given P* appears to depend critically on P’~ being

small for P* close to unity and large for P* + 1/2 (since in this latter

situation P2
(U
c
) ~ P1). However, of greatest importance, is the fact that

for either P2
(U
E
) or P2 (tJ

~
) used at any P* (1/2 < P~ < 1) we have

IL~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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3.1.

Table 4

Eff ic iency of P relative to P. (U ) for k > 31 =

when the (.1. < I < k)  are in vjy ~~ous configurat ions

1 

-

I ~1k] k-1]~~~~’ 
U [j ]~~ {. 1 

_____

k ~ (LF ) ? 

I

~/6~=0 ~~~/ =o.5 6/o i.ofro)~=2.o ô/~~~4 .0

0 .99 0.9328 0.7 184 0.6938 0.6913 0.6912 0.5912 0.6572
0.9 5 0.9624 0.7965 0.7430 0.7206 0.7148 0.7147 0.594 3
0.90 0.9838 0.8887 0.8394 0. 7090 0 .7684 0 .7659 0.5606
0.75 0.9999 0.9947 0.9899 0.0808 0.9462 0.8603 0.5354

0.99 0.9139 0.7020 0 .t ~676 0.6661 0.6660 0.6660 0.6424
0.95 0.9392 0.7650 0.6832 0.~ 605 0.6663 0 .666 3  0.5900
0 .90  0.9631 0.8389 0.7377 0 .69~~5 0.6866 0 .6862  0 .5549
0.75 0.9967 0.9772 0.9380 0.8768 0.7926 0.7511 0.5262

0.99 0.8954 0.6866 0.6468 0.6457 0 .6t . 57 0 .64 57 
- 

0.6 269
0.95 0.9165 0.7431 0.6465 0~ 6361 0.634 7 0.634 7 0.5759

5 0 .90 0 .0~ 03 0.8040 0.67 55 0 .649 3 0.6424 0.54 22 0. 5460
0.75 0.9888 0.9473 0.8433 0.7373 0.7014 0.6847 0.5104
0.60 0.9984 0.9959 0.9818 0.9360 0.8211 0.7405 0 .5225

0.99 0.8300 0 .64 09 rO.5016 0.5911 0.5911 0.5911 0.5811
0.95 0.8366 0 .6778 0.5698 0.5651 0.5658 0 .5658 0.5390

13 0.90 0.8518 0.7174 0.5695 O.56]..0 0.5595 0.5595 0.5179
0.75 0.9171 0.8323 0.6032 0.5740 0 .5624  0.5516 0. 4819
0.60 0.9306 0 .9496  0.6968 0 .6278 0.5918 0 .578 9  0. 4788
0.4 5 0.9994 0.9970 0.8879 0 .7497 0.6699 0 .6281 0.5160

0.99 0.7920 0 .6 178 0.5662 0.5659 0.5659 0.5659 0 .5598
0.95 0.7906 0 .6463 0.5376 0.5353 0.5352 0.5352 0.5169

15 0.90 0.7993 0.6769 0.5296 0 .52414 0.5236 0.5236 0.4 959
0. 75 0.8504 0.7653 0.5423 0.5263 0.5211 0.5209 0 .4639
0.60 0.9389 0.8864 0. 5820 0 .5477 0,5309 0.5278 0.4 558
0.45 0.9934 0.98 31 0.6905 0.6195 0.5826 0.5835 0.4 94 0 It
0.99 0.74 72 0.5913 0.5381 0.5379 0 .537 9 0 .5379 0.5333
0.9 5 0.7372 0.6109 0.5023 0.5009 0.5008 0.5008 0.4892

25 0.90 0.7388 0.6333 0.4914 0.4885 0.4881 3.4881 0.4709
0.75 0.7683 0.6954 0.4878 0.4790 0.4766 0.4766 0.4449
0.60 0.8326 0.7769 0.52014 0.5042 0.4980 0.4976 0.14497
0.45 0.9531 0.9088 0.6306 0.6058 0.5951 0.5940 0.5249

_ _ _ _  _ _ _ _  I
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~ 1 for all p € ~ 2 and RE << 1. Thus both P (U ) and
— — i.i(” ) 2 E —

are highl~ effective as screening procedures.

9.2 P2(IJ
C
) vs. for k >  3

For given k .? 3 the performance of 1
~2
(U
~
) relative to that of

as measured by RE for 1/k < P* < 1 and ~i e ~ is similar to that noted

for k = 2. In additicn , if we regard RE as a function of k for fixed P*

and configuration of the p . (1 < I < k), specifically for the configurations

p (0); 
~
‘fk] ~

‘[k— 1] Y~ — 6 (2  < i < k—l , 0 ~. 6 <

- 

~[k-lJ 
= ~ , our computations indicate that RE is decreasing in k

(although this has not been established analytically). Thus the effectiveness

of P2
(U
~
) as a screening procedure appears to be increasing with increasing

k .

10. Directions of future research

The most important unsolved problem associated with P2 is that of

determining the LF-configuration of the p.~ (see (5.7)) for k > 2; as

noted earlier, we conjecture the answer to be the slippage configuration

~i (5 ~~~~) .  If this conjecture can be shown to be true , it will be necessary to

find efficient algorithms for evaluating P (6..~){CSIP2) (as given by (5.6))

numerically before the design constants (
~ l,~ 2,

â
~
UE) for use with P2

(U
E
)

can be deter-mined.

A two-stage minimax screening procedure, analogous to P2 , can be

devised for selecting the smallest (say) normal variance; this was done

in Tamhane [1975b]. However, design constants to implement the procedure

must still be computed.

I
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Procedure 
2 given by (4.1) permanently eliminates populations for

which < - ii. However, P2 can be modified in such a way that

populations from which a total of only n1 observations are taken, are

eligible for selection as “best” along with those from which a total of

+ ‘2 observations are taken; in this modification we asaert that the

population associated with tnax{max X.-, max is best, Such a procedure

was considered in Tambane [1~75aj; an exact analytical expression for the

PCS was derived , and the PCS performance was studied by Monte Carlo sampling

methods . Aside from the analytical and computational difficulties (as well

as the problem of determining the LF-configuration of the p 1
) ,  procedures

of this type wc’ald appear to represent a fruitful direction of generalization .
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- - The problem of selecting the normal population with the largest populat ion

tn ’an when the populations have a common known variance is considered . A

-• two-stage procedure is proposed which guarantees the same probability •-- ->  L
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~ requirement using the indifference-zone approach as does the single-stage pro-

cedure of Bechhofer f-±9-51++. The two-stage procedure has the highly desirable

property that the expected total number of observations required by the proce-

Gdure is always less than the total number of observations required by the

corresponding single-stage procedure, regardless of the confi gura tion of the

populat ion_means. The saving in expec~ ed total number of observations can be

substantial , particularly when the configuration of the population means is

favorable to the experimenter. The saving is accomplished by screening out

~non-contending ’1 populations in the first stage , and concentrating sampling

only on ~contending~ populations in the second stage. The two-stage procedure

can be regarded as a composite one which uses a screening subset-type approach

(Gupta [1956], [1965]) in the first stage, and an indifference-zone approach

-(Preeb-ho-fer [l%4] ) applied to all populations ~‘etained in the selected subset

in the second stage. Constants to implement the procedure for various k and

are provided , as are calculations giving the saving in expected total

sample size if the two-stage procedure is used in place of the corresponding

single-stage procedure .
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